
ORI GIN AL PA PER

Environmental context shapes immediate and cumulative
costs of risk-induced early hatching

B. Willink • M. S. Palmer • T. Landberg • J. R. Vonesh •

K. M. Warkentin

Received: 22 January 2013 / Accepted: 14 June 2013 / Published online: 4 July 2013
� Springer Science+Business Media Dordrecht 2013

Abstract In animals with complex life cycles, fitness trade-offs across life stages

determine the optimal time for transitions between stages. If these trade-offs vary pre-

dictably, adaptive plasticity in the timing of life history transitions may evolve. For

instance, embryos of many species are capable of accelerating hatching to escape from egg

predation and other hazards, but for plasticity in hatching timing to be selectively main-

tained, early hatching must also entail costs, probably in subsequent life stages. However

the post-hatching environment, which influences this cost, is variable in nature. We

assessed how two elements of the post-hatching environment, predator species and age
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structure created by hatching age plasticity, affect costs of hatching early in red-eyed

treefrogs, Agalychnis callidryas. Red-eyed treefrog embryos were induced to hatch at the

onset of hatching competence or near the peak of spontaneous hatching and exposed to one

of three insect predators in single or mixed hatching-age treatments. Age structure created

by hatching-age plasticity did not affect tadpole survivorship or growth; however, the

consequences of hatching timing depended on predator species and foraging mode. Tad-

poles that were induced to hatch early experienced initially higher mortality rates only with

the more actively foraging predator. Nonetheless, mortality costs of accelerated hatching

were apparent with all predators once we factored in the longer duration of exposure that

early hatchlings experience in nature. This study suggests that extended exposure of young

larvae to predators may be a general cost of early hatching, explaining why spontaneous

hatching occurs later in life across variable environmental contexts.

Keywords Complex life cycle � Life history switch point � Environmental variability �
Growth � Phenotypic plasticity � Trade-off

Introduction

Adaptive phenotypic plasticity can evolve when environmental conditions predictably

affect fitness, so that phenotype-environment match is enhanced by producing alternative

phenotypes in different environments (Moran 1992). In animals with complex life cycles,

the optimal time of life history transitions depends on fitness trade-offs across stages

(Werner 1986), and plasticity may evolve because risks and opportunities at each stage

vary among environments. For instance, when stage-specific mortality risks are immediate

it is almost certainly adaptive to escape them by accelerating the transition to the next life

stage. However, this early transition is expected to bring fitness costs in subsequent stages

for such plasticity to be selectively maintained.

Hatching is the first life history switch point in the life of most animals, and evidence

for the ubiquity of plasticity in hatching timing is rapidly accumulating across animal taxa

(reviewed in Warkentin 2011a). A variety of organisms can accelerate hatching to escape

attacks by egg predators or pathogens (Warkentin 1995; Li 2002; Moreira and Barata 2005;

Wedekind 2002; Touchon et al. 2006; Ireland et al. 2007; Doody and Paull 2013). How-

ever, most studies addressing the evolution of plasticity in life history transitions focus on

metamorphosis and the onset of reproduction. We know little about the general mecha-

nisms that maintain plasticity in the timing of hatching (e.g. Gomez-Mestre et al. 2008a;

Warkentin 2011b), and even less about the role of the environmental context shaping the

magnitude and form of the trade-offs associated with hatching timing.

To date, most studies assessing the costs of risk-induced hatching show that early

hatchlings experience higher predation (Warkentin 1995, 1999a; Gomez-Mestre et al.

2008a). These studies have measured instantaneous rates of mortality that depend on

hatching phenotype, but have not factored in the time over which such rates apply. Pre-

dation rates are often critically high during early ontogeny (Werner and Gilliam 1984;

Ireland 1989; Tanhuanpää et al. 2001), thus decisions in response to risk during this period

(i.e. when to hatch) probably have important fitness consequences. For instance, for red-

eyed treefrogs, Agalychnis callidryas, predation declines rapidly as tadpoles grow (McCoy

et al. 2011). Although their larval period may last months, most of larval mortality can

occur in the first 2 weeks (Touchon et al. 2013). Plasticity in hatching timing generates

variation in how much of early development is spent in the egg versus the larval stage.
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Specifically, hatching early adds time to the beginning of the larval period, when mortality

rates are high. An animal’s phenotype at any time point affects its current risk of predation,

but fitness ultimately depends on survival over time. Therefore, effects of both hatchling

phenotypes and the partitioning of time between life stages with different risks will con-

tribute to costs of early hatching. However, earlier entry into the larval environment might

also allow for compensatory growth to reduce cumulative mortality (e.g. Vonesh and

Bolker 2005), potentially mitigating costs. Understanding these effects is further compli-

cated by the fact that, in nature, embryos of most species hatch into variable environmental

contexts, with diverse predators and alternative prey. Here, we investigated phenotypic and

time-partitioning effects of predator-induced accelerated hatching in A. callidryas. Spe-

cifically, we asked how two components of the post-hatching environment, prey age-

structure and predator identity, affect the mortality and growth of early and late hatchlings.

The arboreal embryos of A. callidryas can hatch up to 30 % prematurely to escape a

variety of threats to eggs, including predator attacks, flooding, and pathogen infection

(Fig. 1; Warkentin 1995, 2000, 2002; Warkentin et al. 2001). At some ponds predators attack

over half of clutches laid (Warkentin 1995, 2000), thus induced early hatching is frequent.

Red-eyed treefrogs breed throughout the Neotropical rainy season, whenever it rains, so

clutches of different ages are typically present at ponds concurrently (Warkentin et al. 2006).

Embryos of different egg cohorts may hatch at the same time if, for instance, the younger

embryos are attacked by an egg predator while the older eggs hatch spontaneously. Thus,

plasticity in hatching timing contributes to population structure by altering the age, size and

stage at which animals enter the larval environment (hereafter, age structure).

Previous studies aiming to quantify fitness costs of early hatching have measured

predation risk for early and late-hatched larvae separately (e.g. Warkentin 1995; Gomez-

Mestre and Warkentin 2007). We assessed how the age structure of hatchlings entering the

pond together shapes the consequences of early hatching. We hypothesized that even if

early hatchlings are more vulnerable to predators, the presence of alternative prey could

reduce their predation rate if predators preferentially attack larger prey that may grant
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Fig. 1 Timeline of critical events in the early ontogeny of A. callidryas, based on development rates in
Gamboa, Panama. All embryos begin development in arboreal eggs (leaf pattern) and eggs are laid at night
(black bars), most between 2200 and 0200 hours. Embryos become capable of hatching during the day at
age 4 days, entering a period of facultative embryonic development during which they hatch in response to
egg predators, pathogens, and other threats. Spontaneous hatching peaks at age 6 days, shortly after dark.
Upon hatching, tadpoles enter the water (wave pattern) and are exposed to aquatic predators. We compared
effects of hatching age on survival in two ways: (1) over their first 24 h in the water (dark grey) for tadpoles
that hatched early and late in the plastic hatching period (vertical arrows), and (2) over the same 72 h period
(light grey) for early hatchlings that spent the entire period in the water and late hatchlings that began in the
egg and later entered the water
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superior returns per unit of effort (e.g. Chrzanowski and Simek 1990). Thus, age structure

may lessen the mortality costs of early hatching. Conversely, if predators prefer smaller or

less developed prey, the presence of early hatchlings could enhance survivorship of larger

or more developed prey (e.g. de Roos et al. 2003).

After hatching, red-eyed treefrogs are exposed to a new suite of potential predators. The

effects of early hatching likely depend on predator identity, because predator foraging

mode influences selection of prey that differ in motility and size (Greene 1986). Active

foragers normally encounter and attack more sedentary prey than do ambush predators

(Huey and Pianka 1981; Grant and Noakes 1987) and should pose a major threat to early

hatchlings, which are initially less active than spontaneously hatched tadpoles (Warkentin

1999a; Gomez-Mestre et al. 2006). Also, relatively large predators that will consume many

prey before satiation are expected to search more actively than relatively small predators

(Rosenheim and Corbett 2003), and thus encounter inactive prey more often. In contrast,

the inactivity of early hatchlings may protect them against ambush predators that rely

heavily on prey movement to encounter prey. We exposed early and late-hatched tadpoles

to three aquatic insects that differ in foraging behavior and predicted that costs of early

hatching would be greater with predators that forage more actively.

Aquatic organisms are known to exhibit reduced growth in response to cues of predation

risk (reviewed in Preisser et al. 2007). We hypothesized that if environmental context

influenced mortality costs of early hatching it would also modulate growth. Early hatch-

lings can grow faster than conspecifics remaining in the egg because hatching releases

them from physiological constraints on metabolism and development rate imposed by the

egg capsule (Warkentin 1999b; Rogge and Warkentin 2008). However, we expected that

growth of early hatchlings would be suppressed in environments that pose greater risks,

such as with actively foraging predators, potentially overriding any growth acceleration

from physiological release.

Finally, within a single egg cohort (i.e. eggs laid on the same night), some clutches are

induced to hatch early while others remain undisturbed until they hatch spontaneously,

thereby entirely avoiding aquatic predators for a longer period of early development

(Fig. 1). Early hatchlings continue to develop rapidly during their additional time in the

water and may become increasingly vulnerable to ambush predators. Here, we tested the

hypothesis that the increased duration of exposure to aquatic predators overrides any

immediate benefit of initial inactivity, so that when accounting for this time-partitioning

component early hatching is costly regardless of predator foraging mode. Together, our

results clarify the role of environmental context in shaping the mechanisms that maintain

plasticity in the timing of a fundamental life history transition.

Materials and methods

Animal collection and handling

This research was conducted from June-July 2010 and June 2012 at the Smithsonian

Tropical Research Institute in Gamboa, Panama. Young A. callidryas egg clutches were

collected from the Experimental Pond (9�7014.8800N, 79�42000.1100W) no more than 2 days

post-oviposition. Clutches were maintained at ambient temperature and humidity in an

open-air laboratory and misted regularly to prevent dehydration. For each experiment,

hatching was induced 4 days post-oviposition, the onset of hatching competence (early

hatchlings) or 48 h later, at 6 days post-oviposition, near the peak of spontaneous hatching
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(late hatchlings, Fig. 1) by manually stimulating eggs and submerging them in water. To

determine the onset of hatching competence, we tried to induce hatching of a few clutches

starting at mid-day, 4 days post-oviposition. If embryos did not hatch readily further

attempts were made at half-hour intervals. All embryos used in the experiments hatched

before 1430 hours.

We assessed tadpole vulnerability to three insect predators that differ in their foraging

behavior: one ambush predator and two that use active foraging, one small and one large.

Aeshnid dragonfly nymphs (Anax spp, mean total length = 36.14 mm, SD = 4.81) are

visually oriented (Sherk 1977) ambush predators regardless of habitat structural com-

plexity (Michel and Adams 2009). They typically perch underwater on or under vegetation

and leaf litter and strike when prey come nearby (Pritchard 1965). Libellulid dragonfly

larvae (Pantala flavescens, mean total length = 17.31 mm, SD = 2.85) are small and less

voracious predators (J. Vonesh & J. Touchon unpublished data). They can forage actively,

propelling themselves through the water column with their ventilator chamber (Sherratt

and Harvey 1989). Belostomatid giant water bugs (Belostoma cf. porteri, mean total

length = 32.04 mm, SD = 3.82) can use both ambush and active strategies, but in venues

with relatively simple structure, such as our experimental tanks, they rely more on active

foraging (Cloarec 1990). Predators were collected from A. callidryas breeding ponds in

Gamboa where they are common and housed individually at ambient temperature and

photoperiod. Prior to experiments predators were starved for 2 days to standardize hunger

levels.

Experiment 1: Effects of hatchling phenotype and age structure on predation

and growth rates

In this experiment we assessed effects of the phenotypes of early and late-hatched tadpoles

on their initial mortality and growth rates, and asked how these effects are shaped by

variation in predator identity and hatchling age structure. We measured predation and

growth rates of early and late-hatched tadpoles over 24 h, both alone and in the presence of

the other hatching age class. We used the same design in four sequential experiments, one

with each predator type (belostomatid, aeshnid and libellulid) and a no predator control

(Fig. 2a). We used a substitutive design with three treatments: 20 early hatchlings alone, 20

late hatchlings alone, and a mix of 10 early and 10 late hatchlings. Each treatment was

replicated 10 times except for the belostomatid experiment that had 10, 9 and 11 replicates,

respectively. Egg clutches laid 2 days apart were used in these experiments, so that 4 and

6 day old embryos could be induced to hatch on the same day.

Hatchlings from 10 to 15 clutches of each age were pooled and samples of 10 or 20

individuals drawn haphazardly. Groups of tadpoles were digitally photographed in dorsal

view with a ruler and then placed into a randomized experimental array consisting of 30

round 60 L tubs with mesh covers. Tubs contained 40 L of aged tap water, 30 leaves to

provide structure, 0.4 mg/L of Sera micron (Sera, Heisenberg, Germany) as food for

tadpoles, and a single predator (or no predator for controls).

After 24 h, predators and tadpoles were removed from the experimental array. Survi-

vors were photographed again and counted. Tadpoles from the mixed treatment were then

examined individually under a dissecting microscope to determine their age class. To

classify these tadpoles we used a combination of morphological traits that readily differ-

entiated tadpoles from the early and late-hatched treatments (Fig. 3). Tadpole total lengths

were measured from photographs using ImageJ (NIH; http://rsbweb.nih.gov/ij/). In pho-

tographs from the mixed treatment, tadpoles were identified as early or late-hatched as in
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(a) Experiment 1: design for effects of hatchling phenotype and age structure

(b) Experiment 2: design for effects of the partitioning of early 
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Fig. 2 Experimental design for testing a the phenotypic effects of early hatching in environments with
variable prey age-structure and predator regimes and b the combined effects of hatchling phenotypes and the
partitioning of early development across terrestrial egg and aquatic larval stages with three different
predators. The experimental design was repeated in consecutive experiments with each predator in both
experiments and with a predator-free control in a
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Fig. 3; 8 % were not measured because their position or local image quality (shadows or

glare) did not allow age class assignment. Average growth per replicate was calculated as

the difference between average total length of tadpoles in initial and final photographs.

Experiment 2: Effects of hatching timing on survival through early ontogeny

To quantify the effect of extended exposure to aquatic predators due to early hatching (i.e.

altered time partitioning), we assessed tadpole mortality at daily intervals over the 72 h

period from the onset of hatching competence to 1 day after the peak of spontaneous

hatching (age 4–7 days, Fig. 2b). Essentially all embryos that are healthy and developing

normally at the onset of hatching competence survive to hatch spontaneously, if they are

not disturbed by egg predators or other threats that induce hatching (Warkentin 2000;

Gomez-Mestre and Warkentin 2007). Thus, our comparison of survivorship to 7 days post-

oviposition specifically addresses the short-term effect of different durations of exposure to

aquatic predators between tadpoles that were undisturbed as eggs and tadpoles that were

threatened and induced to hatch at the onset of hatching competence. We conducted

sequential experiments with each of the three predators above.

For each experiment, we collected egg clutches laid on a single night. When eggs were

4 days old, we randomly selected approximately half of the clutches and induced hatching

Fig. 3 Red-eyed treefrog tadpoles hatched at age 6 day (left) and 4 day (right) photographed together
*24 h after hatching. 1 day post-hatching, compared to early hatched tadpoles, late-hatched tadpoles have
longer tails, both absolutely and relative to body length. Their snouts are wider and snout length clearly
exceeds eye diameter. Their lungs and internal gills are larger, and gut coils are evident. In dorsal view
(insets) they are widest at the eyes and taper posteriorly, whereas early hatched tadpoles still have bulbous
yolk sacs
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as above. The early hatchlings were pooled across clutches, haphazardly drawn from the

pool, photographed in their groups, and placed into an array identical to that used in the

24-h experiments. 2 days (48 h) later the remaining clutches were induced to hatch and

late hatchlings were added to the experiment. There were 20 tadpoles per replicate, 10

replicates per treatment (early and late hatched) for each predator, and 11–19 clutches

pooled for each set of 10 replicates. For this experiment we ran 12 ‘no predator’ controls (9

with early hatchlings and 3 with late hatchlings). In these controls only early hatchlings

(five of a single tank, 2.8 %) suffered mortality. We did not include a mixed treatment

because in pilot experiments we could not accurately determine hatching age from external

morphology for 7 day old tadpoles from a single egg cohort. We counted survivors every

24 h and ended experiments at 72 h. In both sets of experiments all predators and surviving

tadpoles were released at their ponds of origin after the experiment was completed.

Data analysis

Tadpole survivorship was analyzed using generalized linear models (GLMs) with binomial

error distribution and logit link function. Statistical significance was determined by using

v2 tests. In both sets of experiments we compared survivorship between hatching ages and

predator types. We included all sequential 24 h experiments in one analysis and all

sequential 72 h experiments in another analysis, acknowledging that this confounds effects

of predator species with those of experiment date, which we expect to be small. In the 24 h

experiments we also included age structure as a factor. Growth rates over 24 h (Experiment

1) and final tadpole lengths after 72 h (Experiment 2) were compared using an ANCOVA,

with initial tadpole length as a covariate. The factors for the first experiment were hatching

age, predator identity and hatchling age structure, and for the second experiment the effects

of hatching age and predator identity were tested. In all analysis we started with a full

factorial design and used stepwise model simplification based on the Akaike Information

Criterion (AIC) to obtain the minimal adequate model (Online Appendix 1). All statistical

tests were carried out in R software (R Development Core Team 2009). Confidence

intervals and statistical contrasts between treatments were obtained using the ‘‘contrast’’

package (Kuhn et al. 2011).

Results

Experiment 1: Effects of hatchling phenotype and age structure on predation

and growth rates

The best model to explain tadpole mortality during their first 24 h in the water included the

effects of predator type (v2 = 86.59, df = 3, P \ 0.0001), hatching age (v2 = 21.55,

df = 1, P \ 0.0001), and the interaction between these two factors (v2 = 37.04, df = 1,

P \ 0.0001). This result indicates that consequences of early hatching depended upon

predator species, but not hatchling age structure. Early-hatched tadpoles had on average

7.1 % (CI95 3.3–11.0 %) higher mortality than late hatchlings with belostomatids (Fig. 4a),

and 16.3 % (CI95 10.8–21.9 %) lower mortality than late hatchlings with aeshnids

(Fig. 4a). Hatching age did not affect libellulid predation over 24 h, which was low in both

early and late-hatched treatments (Fig. 4a). In the absence of predators all late-hatched

tadpoles survived and 3 % of the early hatchlings died within 24 h (Fig. 4a).
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Early hatchlings entered the water at 9.84 (SD = 0.44) mm, and late hatchlings at 12.00

(SD = 0.63) mm. Tadpole growth, as measured by total length, was best explained by a

model including predator type, hatching age, the initial length covariate, and their three

way interaction, but excluding age structure (Table 1). In most cases, smaller tadpoles

grew faster within each hatching age class, but the effect of initial length on tadpoles

growth differed among predatory environments and hatching age classes (Online Appendix

2). Once the effect of initial length was accounted for, growth was affected by the predator

treatment and hatching age. Average-length early hatchlings and average-length late

hatchlings had similar growth rates in predator-free environments (contrast = 0.03 mm,

CI95 -0.18 to 0.24 mm, Fig. 4b). However, where vulnerability differed between age

classes, growth was faster for the less vulnerable age class (Fig. 4b). With belostomatids

average-length late hatchlings grew 0.40 (CI95 0.19–0.61) mm more than average-length

early hatchlings, and with aeshnid dragonflies they grew 0.28 (CI95 0.07–0.49) mm less.

With libellulid dragonflies, which posed a relatively low and equal risk to both hatching

age classes, early hatchlings grew 0.38 (CI95 0.17–0.59) faster than late hatchlings

(Fig. 4b).

Experiment 2: Effects of hatching timing on survival through early ontogeny

Measured at age 7 days, when the effects of both hatchling phenotype and the partitioning

of early development between safe egg and dangerous larval environments were combined,

early hatched tadpoles had lower survivorship than late-hatched tadpoles with all three

predators (v2 = 11.983, df = 1, P = 0.0005, Fig. 5). However, mortality differed among

predators (v2 = 72.912, df = 2, P \ 0.0001, Fig. 5). After 72 h, belostomatids and

aeshnids had consumed over half of the early hatched tadpoles, while predation by

libellulids remained relatively low (Fig. 5a). Even though two additional days of exposure

to aquatic predators resulted in higher mortality of early versus late hatchlings with all
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Fig. 4 Mean survivorship (a) and growth (b) of of early hatched and late-hatched tadpoles after 24 h of
exposure to one of three insect predators or a predator-free control. Data are pooled across single and mixed
age-structure treatments since age structure had no effect on survivorship or growth. Error bars show SE
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predators, a significant interaction (v2 = 19.993, df = 2, P \ 0.0001, Fig. 5) shows that

differences in survivorship with hatching age were larger with the belostomatid (53.5 %)

than with either dragonfly (23.5 % with aeshnids and 9.0 % with libellulids). Tadpole

length at the end of this experiment was affected by their hatching age (F1, 56 = 13.44,

P = 0.005), with early hatched tadpoles consistently larger than late-hatched tadpoles.

Final size also varied across experiments with different predators (F1,56 = 22.14,

P \ 0.001; Fig. 6).

Discussion

This study aimed to understand the role of environmental context in shaping the fitness

trade-off that maintains plasticity of hatching timing in the red-eyed treefrog. We assessed

larval mortality costs of induced early hatching under two naturally variable elements of

the larval environment, hatchling age structure and predator identity. Also, we asked if

predation risk is associated with reduced growth, even before tadpoles start feeding.

Table 1 Minimal adequate ANCOVA explaining tadpole growth during their first 24 h in the water

Source df MS F P

Predator 3 1.23 10.71 <0.0001

Hatching age 1 0.20 1.70 0.194

Initial length 1 18.83 163.04 <0.0001

Predator 9 Hatching age 3 0.40 3.50 0.017

Predator 9 Initial length 3 0.28 2.38 0.072

Hatching age 9 Initial length 1 0.25 216 0.144

Predator 9 Hatching age 9 Initial length 3 0.67 5.79 <0.001

Residuals 145 0.12

Early and late hatched tadpoles were measured upon hatching and exposed to one of three predators
(belostomatid, aeshnid or libellulid) or a no-predator control, in tanks with age structure (both age classes
present) and tanks without it (a single age class per tank). Significant effects are highlighted in bold
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Fig. 5 Cumulative survivorship of early and late-hatched tadpoles during the 72 h period between the onset
of hatching competence and 1 day after the peak of spontaneous hatching. After hatching, tadpoles were
exposed to either: a libellulid dragonfly nymphs, b belostomatid giant water bugs, or c aeshnid dragonfly
nymphs. Late-hatched tadpoles experienced no predation before hatching; they are shown with zero
mortality during their late embryonic period, as is typical for undisturbed clutches. Data are mean and SE of
N = 10 replicate tanks per treatment
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Previous studies indicate that hatching timing affects the behavior, morphology and growth

of tadpoles (Warkentin 1999a, b; Vonesh and Bolker 2005), as well as the outcome of

interactions with predators of larval and post-metamorphic stages (Warkentin 1995;

Vonesh and Osenberg 2003; Vonesh 2005; Gomez-Mestre et al. 2008b; Touchon and

Warkentin 2010). However, the magnitude and even the direction of these effects vary

across studies, probably because consequences of early hatching differ when assessed in

different predatory environments or at different points in ontogeny. We found that predator

identity and foraging behavior influence and may reverse the immediate effects of

hatchling phenotype on mortality rate, while modulating growth rates of hatchlings.

Nonetheless, the hypothesis that a general predation risk trade-off exists across life stages

is supported by the finding that, once the effects of accelerated hatching on the partitioning

of early development across stages are factored in, mortality costs become apparent

regardless of the predator to which larvae are exposed.

We found that the effect of hatching timing on initial larval mortality rate depended on

the predator. Hatching early increased mortality with a large active forager (belostomatid),

had a negligible effect with a small active forager (libellulid), and seemed advantageous

with an ambush predator (aeshnid). Early hatchlings are not only smaller than spontane-

ously hatched tadpoles, but also less active (Online Appendix 3) and they have slower,

shorter escape responses (Landberg et al. 2011) and a shorter flight initiation distance

(Warkentin 1999a). Low activity and late, slow escape responses are disadvantageous with

active foragers that pursue their prey (e.g. Feder 1983; Watkins 1996; Pruitt et al. 2012)

and probably cause high mortality of early hatchlings with belostomatids, as they do with

predatory shrimp (Warkentin 1999a). On the other hand, immobility protects prey against

visually oriented sit-and-wait predators (Skelly 1994; Hatle et al. 2002), such as aeshnids.

Higher predation by aeshnids on late than on early hatchlings is consistent with another

study (Landberg et al. 2011) and with predictions from behavior. Mortality in control tanks

was rare compared to predation but it occurred only to early hatchlings. This suggests that

viability costs may exist for tadpoles hatched at the onset of hatching competence, even in

the absence of predators. Indeed, a recent longer-term study also found that early hatching

increases mortality in predator-free venues (Touchon et al. 2013). We found no evidence

that age structure modulated risk, with any predator, for either hatchling age class. It is,

however, still possible that the greater, more complex age structure found in ponds might
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mitigate predation costs of early hatching, or that the presence of hatchlings might mitigate

risk for some older tadpoles in nature.

Our results indicate that predators can suppress tadpole growth even in the first day after

hatching, but that the strength of this effect varies with predator type and hatching age.

Hatchling growth suppression by predators cannot be not due to reduced foraging. All A.

callidryas hatch with substantial yolk reserves and at 24 h post-hatching early hatchlings

have never and late hatchlings rarely begun feeding (Warkentin 1999b). Instead, slower

growth might be caused by stress in the presence of predators. Producing and maintaining

the stress proteins that increase metabolism in preparation for the fight-or-flight response is

costly, and this can be reflected in decreased growth rates (Slos and Stoks 2008). The

differences across hatching ages in growth suppression with each predator were largely

congruent with relative risk (Fig. 4a, b). In particular, with the two more voracious pre-

dators, each age class responded more strongly to the predator to which it was more

vulnerable. Nonetheless, across predator environments we found that by age 7 day early

hatched tadpoles were larger than late-hatched tadpoles from the same egg cohort. Thus the

growth-suppressive effects of exposure to aquatic predators are not stronger than the

enhanced growth rate associated with leaving the constraints of the egg capsule (Warkentin

1999b).

The phenotypic effects on predation discussed above are an incomplete picture of the

short-term mortality costs of accelerated hatching because hatching early also extends the

period of exposure to aquatic predators. We hypothesized that this shift in the partitioning

of early development across life stages, and environments, may override any initial benefits

of early hatchling phenotypes. Our results support this idea. Cumulative mortality revealed

costs of early hatching even with a predator that caused relatively low and equal initial

mortality rates (libellulids) and reversed the initial phenotypic advantage of early hatch-

lings with aeshnids. Phenotypic and time-partitioning effects differ drastically with aesh-

nids in part because for early hatchlings aquatic risk accumulates over more time and also

because as early hatchlings develop and become more active they rapidly become more

detectable to ambush predators. These short-term effects of time partitioning across life

stages are important because differences in survivorship between hatching ages that are

established in a brief period after hatching can persist through larval ontogeny to affect

recruitment into the juvenile stage (Touchon et al. 2013).

In frog species studied so far, the onset of hatching competence and the timing of

spontaneous hatching evolve independently (Gomez-Mestre et al. 2008b; Gomez-Mestre

and Warkentin 2013). The lower limit of inducible hatching is probably set by the

development of the hatching mechanism and has evolved under selection by acute egg-

stage risk. Across A. callidryas and several other amphibians the onset of inducible

hatching represents only 56–80 % of the developmental period before spontaneous

hatching (Warkentin 2011b). The fact that safe embryos rarely hatch as early as they can

suggests that costs of early hatching are common. Our results point to predation risk as a

possible general mechanism for this cost, even with unpredictable variation in the post-

hatching environment. Early hatchlings have more time to die during a period when they

are highly vulnerable to some predators and increasingly vulnerable to others.
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